
 

 

 

 

    few CEOs ago Apple had a grand vision for the future of computing. It was called OpenDoc.
We even ran a cover story on it in ATPM 2.09. OpenDoc promised to end the age of bloated 
do-everything applications by providing an architecture where users could mix and match 
collections of highly focused “containers” or “parts” to suit their needs.

Apple’s Publish and Subscribe, which debuted in System 7.0, let you “publish” pieces of 
documents into “edition” files, which other documents could then “subscribe” to and embed 
within themselves. With OpenDoc, all the data pieces were stored in the same file, and each 
could be edited in place. When you clicked on a chart, for example, the menu bar would 
show all the commands that your chart editor supported. OpenDoc promised to completely 
free users from the application software paradigm, leaving them to focus on their 
documents, rather than on the tools they used to make their documents.

Cyberdog, originally intended merely as a demonstration of OpenDoc’s potential, suddenly 
became Apple’s “Internet Strategy.” Although Cyberdog could never compete with stand-
alone Web, mail, or FTP clients, it showed enormous potential and is still used by a handful 
of OpenDoc loyalists. Sadly, an e-mail signature file saying “This message sent using the 
Cyberdog mail system” or “On the Internet no one knows you’re an OpenDoc part” is all 
most Mac users are likely to hear about OpenDoc now. It seems that OpenDoc was yet 
another Apple technology that was released before it was ready (too slow and resource 
hungry) and before the market was ready for it. While it probably won’t be called OpenDoc 
or even made by Apple, I think that someday we will be using software that is remarkably 
similar to OpenDoc.

The Unix Paradigm
In Unix, applications are small and specialized, but general. (Each command-line command 
is itself a small application.) Multitasking and memory protection aside, the power of Unix 
comes from the ability to use all these applications in tandem to accomplish tasks. Nearly all
documents are stored in plain text format. Thus, each program can operate on another’s 
data. Whereas OpenDoc Editors could operate on different “parts” of a document, in Unix 
one can cascade (or “pipe”) the output of one program into the input of another.

The rise of the Internet during OpenDoc’s fall brought Unix’s paradigm for applications and 
documents to the Mac (and Windows) because most Internet standards are Unix-based. 
Everyday Mac users are increasingly using text or HTML for tasks when they would formerly 
have used specialized applications to store documents in proprietary formats. Even Apple is 
doing this. Sherlock plugins are essentially just text files, and the new Mac OS Help in OS 8.5
is in HTML format. Apple is learning that while custom solutions like AppleGuide may have 



advantages over standard formats like HTML, the number and variety of tools (and people 
skilled in using them) available for standard formats are often more attractive.

XML: The Great Equalizer?
The ultimate in standards-based formats is the eXtensible Markup Language, XML. Like 
HTML, XML is an extension of SGML, the Standardized General Markup Langauage. In HTML, 
there is a standard set of tags you can use to format text, include graphics, and create links 
to other Web pages. In XML, however, you can define your own tags (hence the 
“eXtensible”). Each XML file is prefaced by a link to Document Type Definition that describes 
the tags it contains and how they may be used. (Thus, an application reading an XML file can
tell whether the tag syntax is correct, even if the application was written before the 
particular tags were invented!)

Most Macs users will never need to read or understand XML, but it may soon affect the way 
they work with their Macs. Since XML allows custom tags, online publishers will be able to 
make their databases return data in XML format. The tags will describe the meaning behind 
each part of the data, so applications on the user’s Mac will be able to understand what it 
means. For instance, an invoice from Amazon.com in XML format could easily be imported 
into an XML-savvy version of Quicken for record keeping.

The next version of Microsoft Office will use XML as its standard file format. This might seem 
like an odd move for Microsoft, which has long used proprietary “standards” maintain its 
dominance. This indicates one of two things: either Microsoft thinks XML will be big and 
doesn’t want to be left behind, or they feel that they can make Office a more attractive 
package by storing its data in a format that other applications can understand. Either way, 
users win.

XML’s goal is to facilitate the exchange of data between applications (and platforms). It will 
make it easy to edit the same file in different applications, each one excelling at a specific 
task. This is the opposite of OpenDoc, which placed the different applications (visually) 
within the same file. It’s not a question of XML or OpenDoc being better than the other—
each was designed for a different purpose.

The problem is that right now the Mac is seriously lagging behind Windows and Unix in XML 
tools. The XML-savvy Internet Explorer 5 for Windows is already in beta, while the Mac 
version won’t be out until sometime this summer. Probably the brightest XML product for 
Mac users is the commercial version of UserLand’s cross-platform scripting and content 
management system, Frontier. (ATPM used to use the freeware version of Frontier for Website
management, but has since switched to a custom BBEdit and AppleScript solution.) On the 
editor front, I have high hopes that a future version of BBEdit will be XML-savvy. After all, it 
already includes an SGML parser.

Java and AppleScript
Apple just released version 2.1 of the Macintosh Runtime for Java (MRJ). It’s faster and more 
stable than MRJ 2.0, and offers much improved compatibility. Unfortunately, Sun’s 
specification for the Java Development Kit 1.2 has been out for several months, and Apple’s 
MRJ only just gained support JDK 1.1.6. (JDK is a much bigger deal than the 1.2 version 
number implies, hence Sun refers to it as the “Java 2” platform.)



Most Mac users’ only experience with Java is “applets” that load inside Web browsers. In 
fact, although Java may not have lived up to all its hype (Remember the talk of whole office 
suites written in Java?), it is becoming a very important tool. Improvements in virtual 
machines are making it faster, and I’m told that theoretically it could eventually run faster 
than conventional applications written in languages like C or C++. Much interesting work 
with XML is being done in Java, and it is becoming increasingly popular in academia and as a
tool for developing custom solutions. In short, much work in emerging technologies is being 
done with Java, so it should be very important to Apple. Steve Jobs has said that his goal is 
to make Macintosh the leading Java platform, and I think he’s serious.

Macintosh has the potential to be a great Java platform because Apple’s MRJ knows how to 
talk with AppleScript. AppleScript has been around since System 7 Pro, but it really started 
gaining steam last year. In my opinion, it’s one of Mac OS’s greatest advantages over other 
platforms—and it will only get better with OS X. The more I learn about AppleScript, the 
more I am amazed at how much power was lurking in the applications I use each day.

So what does Java have to do with XML and AppleScript? Well, lots of “glue” applications for 
integrating XML with existing software solutions are being written in Java. MRJ knows how to 
receive AppleEvents (the messages that AppleScript uses to control applications), and many 
Mac applications are now scriptable. To take full advantage of XML, applications must be 
updated to support it. I think there is serious potential here, for the Macintosh to take 
advantage of some of what XML has to offer by using AppleScript to interface existing 
applications with Java-based XML tools.

The power of the Macintosh has always lain in the way different applications could work 
together smoothly. In the mid-eighties, this meant that applications provided a consistent 
user experience and could share files in common Mac formats like text and PICT. In the early 
nineties, it meant that they could share dynamically updated data via Publish and Subscribe.
Today it means that most applications can exchange data directly via drag and drop and 
automagically via AppleScript. Tomorrow, data exchange will be freer than ever, removing 
another layer of the seemingly arbitrary restrictions that technology places on us. Isn’t that 
what Macintosh is all about?

Links
UserLand Frontier: <http://www.userland.com/frontier5>
A good XML resource: <http://www.oasis-open.org/cover/xmlIntro.html>
AppleScript Sourcebook: <http://www.applescriptsourcebook.com>
ScriptWeb: <http://www.scriptweb.org>

“The Personal Computing Paradigm” is copyright © 1999 by Michael Tsai, 
<mtsai@atpm.com>.
 


